Practical Means for Collapse Prevention

Donald O. Dusenberry, P.E.

Simpson Gumpertz & Heger Inc.

Boston, Los Angeles, New York, San Francisco, Washington

Introduction

- Project viability assessment
- Structural actions that provide resistance
- Detailing for resistance
- Considerations for upgrading existing buildings
- Implementation of upgrade philosophies

Dusenberry's Definition

A major collapse that can be prevented at modest cost by prudent structural arrangements and robust details

Project Viability Assessment

- New buildings
 - Decision early in the process
 - Most systems can provide the resistance
 - Opportunities to modify the system

Project Viability Assessment

- Existing buildings
 - Often a complicated and costly endeavor
 - Existing building programming and systems limit options
 - Uncertainties concerning systems add risk

Project Viability Assessment

- Goals
- Threat evaluation
- Means to reduce exposure and threat
- Consequences of failure
- Alternatives to reduce consequences
- Measuring performance

Goals

- Save lives
- Reduce business interruption
- Reduce structural losses

- Progressive collapse is a rare event
- Experience base is slim

- Certain occupancies generate attention
 - Sensitive federal buildings
 - Facilities of controversial corporations
 - Facilities where large groups gather
- Certain building characteristics generate attention
 - Siting
 - Structural system
 - Contents

- Are quantitative analyses possible?
 - Probably for some circumstances
 - For others, client or regulatory philosophy dictates

- Consider the exposure of the facility
- Consider the vulnerability of the structure
- Consider the consequences of failure

Reducing Exposure and Threat

- Elimination of the event is far better than designing to resist the result
- Structural engineering is the back-up solution

Reducing Exposure and Threat

- Facility planning
 - Reroute traffic that might impact a structure
 - Create a barrier for oncoming traffic
 - Enhance fire protection and suppression
 - Provide stand-off distance
 - Prevent parking in the building
 - Use exterior loading dock / security station
 - Increase security / restrict access
 - Put up a "front of robustness"

Consequences

- Clients often decide without (or in spite of) detailed analyses
- Consequences are too high, even when risk is low
 - Loss of life
 - Interruption of business
 - Political consequences of a loss
- Costs often drive the decision

Alternatives to Reduce Consequences

- Reprogram the facility
 - Change locations of occupants in the building
 - Store fuels outside occupied buildings
 - Consider altering the use
 - Consider abandoning the facility

Constraints on the Decision

- Is there an inherent threat?
- Can the threat be reduced?
- Is the structural system vulnerable?
- Is there a viable way to respond?

Measuring Performance

- Need criteria that matches goals
 - Protection of occupants, contents, and business operations
 - Amount of building allowed to collapse
 - Deformation of the remaining structure
 - Repairability
 - Others

Dependent vs. Independent

- Threat dependent
 - Harden to resist initial damage
 - Determine initial damage
 - Evaluate resistance of remaining structure
- Threat independent
 - Hardening not an alternative
 - Initial damage is "arbitrary"
 - Evaluate resistance of remaining structure

Measuring Performance

- ASCE 7
 - "...[transfer] loads from any locally damaged region to adjacent regions..."
- GSA
 - Limits region of theoretical collapse when one element removed
- Indirect design
 - No measurement required

Measuring Performance

- Except for government approaches, not much guidance
- Often, performance expectation will be client driven
- Actual performance may be difficult to predict
- Advise the client

Structural Actions that Provide Resistance

- Vierendeel
- Catenary
- Arch
- Suspension

Initiating Event

Vierendeel Action

Vierendeel Action

- Relies on "conventional" behaviors
- Can be implemented without major change in structural philosophy

Catenary Action

Catenary Action

- Large deflection behavior
- Tension structure different detailing
- Need thrust-resisting elements

Suspension Action

Suspension Action

- Can be relatively small deflections
- Often requires a programming commitment to concept

Arch Action

- Bearing wall structures
- Non-structural elements

Detailing for Resistance

- Structural system features
- Detailing considerations

Structural System Features

- Good plan layout
 - Regular, symmetric building plan
 - Closely spaced beams framing into girders for load redistribution
 - Avoid long spans

Structural System Features

- Integrate the system
 - Engage structure in all directions
 - Multi-span beams/girders for greater continuity
 - Longitudinal spine of walls and stairwells for enhanced overall stability
 - Perpendicular walls and returns

Structural System Features

- Make the structure work for you
 - Minimize eccentricities to reduce extreme moment demand
 - Avoid discontinuities that will cause load concentrations
 - Set back perimeter columns for protection
 - Detail non-structural walls to support load

Structural System Features

- Detailing Considerations
 - Ductility
 - Force reversals
 - Ties
 - Fuses

Detailing Considerations

- Foundations
- Reinforced concrete
- Steel
- Masonry
- Precast concrete

Foundations

- Column/foundation connections need flexural capacity
- Ultimate bearing strength must support added force
- Consider wider footings
- Consider thicker footing
- Tie footings together

Reinforced Concrete

Features of RC Structures

- Mass is a liability
 - But adds resistance to blast
- Members can be detailed for ductility
 - Confinement for shear resistance
 - Columns with spirals
- Can be designed for two-way action
- Can be designed for load reversals
- Can be designed for alternate paths

- Consider ACI 318 Chapter 21 Special Provisions for Seismic Design
 - Developed for severe cyclic loads
 - Special Moment Frame detailing dissipates energy
 - No proven correlation with collapse resistance

- Ensure flexural failure (ductile) rather than shear failure (brittle)
 - Consider very large rotations
- Maintain continuous positive and negative reinforcement

- Develop the steel
 - Use mechanical couplers that develop the ultimate strength of the bar (Type 2)
 - Do not splice reinforcement near connections or midspan
 - Use seismic hooks on all ties
 - Use seismic development lengths

- Enhance the connections
 - Provide closely spaced confining steel
 - Improves ductility
 - Increases shear and torsion strength
 - Facilitates anchorage
 - Design joint regions to be stronger than the elements
 - Design for full plastic moment capacity before shear failure

- Increase member size
 - Enhances torsional resistance
 - Need to force plastic hinge in beams: larger columns too
 - Larger columns enhance load sharing after loss of adjacent column

RC Column Design

- Provide confinement
 - Continue confining ties through joint region
- Splice column reinforcement at third-points
- Consider formation of plastic hinges, even though hinges preferred in beams

RC Slab Design

- Lightweight concrete reduces load, but performance too
- Provide continuous top and bottom reinforcement in both directions
- Do not splice at midspan or at ends
- Add reinforcing steel to tie to beams
- Cast slab monolithically with beams and girders

RC Slab Design

- Provide punching shear capacity for additional load
- Discourage flat plates: add perimeter frame
- Design for uplift

RC Wall Design

- Provide additional detailing in coupling beams and around openings
- Consider adding boundary elements to serve as columns
- Tie slab into wall

Steel Design

Steel Construction

- Ductile material
- Relatively high strength material
- Relatively light
- Connections are an issue

- Stability
 - Provide lateral support to resist lateral-torsional buckling
 - Consider loss of slab or column on unbraced length
 - Add stiffener plates to reduce local buckling
 - To reach plastic moment in both positive and negative directions
 - Use seismically compact sections

Continuity

- Use shear studs instead of deck welding to connect slab
- Use moment connections for beams in both directions at perimeter
 - Allows beams to cantilever to spandrels
- Two limit states:
 - Developing beam plastic moment
 - Developing beam axial tension capacity

- Connections
 - Consider HS bolted connections to avoid brittle weld failure
 - Use notch tough weld metal recommended for seismic design
 - Specify welding according to AISC 341-02 Seismic Provisions for Structural Steel Buildings
 - Size bolted connections to prevent block shear

- Strength
 - Composite floor system: unshored beams provide more strength than shored beams
 - Design for full plastic moment capacity before local buckling or shear failure

- Stability
 - Check stability for unbraced length with loss of adjacent beams
 - Add bracing for slender columns
 - Use seismically compact columns
 - Use concrete-filled tube columns or concreteencased wide flanges

Strength

- Increased axial load for loss of adjacent columns
- Account for moments from beams delivering their plastic moment capacities
- Column and adjacent structure should force hinge in beam
- Provide continuity plates so beam can develop catenary tension

Fracture

- For built-up column, use notch tough weld metal
- Thick wide flange shapes should meet the special core toughness requirements

- Column splices
 - Size to develop axial tension
 - Size to permit large plastic deformations
 - Welded splices according to AISC Seismic Provisions for Structural Steel Buildings
 - Use notch tough weld metal

Slab Design with Steel Framing

Strength

- Lightweight concrete floor slabs will reduce load at a cost in performance
- Provide additional reinforcing steel: bars in both directions rather than WWF
- Place reinforcement in slab center or use two layers of continuous bars
- Reinforce slab to carry self-weight during loss of column or beam

Slab Design with Steel Framing

Continuity

- Slab on metal deck can provide lateral support to beams
- Use shear studs rather than puddle welds to connect to beams
- Lap reinforcement for continuity
- Do not use mechanical splices unless well staggered

Masonry

Reinforced Masonry

- Strength
 - Strengthen diaphragm for membrane behavior
 - Provide continuous steel in both directions
 - Provide at least one horizontal bar along each course and one vertical bar in each cell
 - Use fully-grouted construction
 - Consider reinforcing walls to span over areas of damage

Reinforced Masonry

- Continuity
 - Tie diaphragm to walls for out-of-plane forces
 - Use lap splices or Type 2 mechanical couplers
 - Dowel wall into foundation

Unreinforced Masonry

- Avoid
- Limit height to one story
- Provide separate independent pilasters or columns for gravity load

Precast Construction

Precast Floor Systems

- Connections are an issue:
 - Provide ductile steel plate connections
 - Integrate with reinforcement
 - Use slotted holes for service conditions
- Provide mild steel top and bottom for force reversals
- Provide topping slab, reinforced accordingly
 - Mechanically connect to members

Tilt-up Construction

- Strength
 - Place first line of interior columns close to panels
 - Design framing to cantilever from first interior column
 - Design cast-in-place pilasters as columns
 - Design roof edge to span over at least one missing panel

Tilt-up Construction

- Continuity
 - Provide membrane capacity in diaphragm
 - Tie diaphragm to walls
 - Tie panels together with mechanical connections or cast-in-place pilasters
 - Tie walls to foundation

Post-tensioned Construction

- Unbonded construction is an issue
- Provide mild reinforcement for gravity loads
 - Especially at perimeter
 - Provide continuous mild reinforcement in top and bottom of floors
 - Design post-tensioning for live load only
- Interconnect elements with ductile connections

Considerations for Upgrading Existing Buildings

- Constrained by as-built construction
 - Detailing will not be ideal for PC resistance
 - Connections will not provide ductility
 - Detailing will not be verified by test or analyses
 - Building programming will be fixed
- Uncertain as-built conditions
- Uncertain materials

Considerations for Upgrading Existing Buildings

- Buildings with effective seismic design are candidates
- When conditions complicate:
 - Remove the threat
 - Upgrade vulnerable elements
 - Add interstitial construction
 - Avoid the need for collapse resistance

Evaluation of Existing Systems

- Review documentation
- Verify as-built construction
- Materials studies
- Evaluation of detailing

Concrete and Masonry Structures

- Usually involves encapsulating elements
 - Difficult to be certain about construction
 - Difficult to add ductility to existing elements
- Upgrades often involve:
 - FRP or steel jackets
 - Encasement with more RC concrete
 - Addition of new elements
 - Cables, ties, interstitial elements

(a) and (b): Taghdi et al., 2000

Steel Structures

- Easier to upgrade than RC structures
- Connections often are the problem
- Engaging slab in resistance is a problem
- Upgrades can mimic details with tested behavior

 $SidePlate^{TM} \\$

Implementation Summary

- Evaluate the threat
- Consider means to reduce the threat
- Study options for reprogramming the facility
- Develop performance expectations
- Evaluate upgrade methods
- Assign costs (direct and indirect)
- Discuss and revise with client
- Design